A Primer on Primes

By: Rich Zwelling (Apex GMAT Instructor)

As I said in my previous post, GMAT Prime Numbers are my favorite topic. This is because not only are they inherently interesting mathematically but they show up in unexpected circumstances on GMAT problems, even when the term “prime” is not explicitly mentioned.

But before we get to that, I thought it would help to review a basic definition:

If you’ve gone through school, you’ve likely heard the definition of a prime as “any number that can be divided only by 1 and itself.” Or put differently, “any number that has only 1 and itself as factors.” For example, 3 is a prime number, because 1 and 3 are the only numbers that are factors of 3.

However, there is something slightly problematic here. I always then ask my students: “Okay, well then, is 1 prime? 1 is divisible by only 1 and itself.” Many people are under the misconception that 1 is a prime number, but in truth 1 is not prime.

There is a better way to think about prime number definitionally:

*A prime number is any number that has EXACTLY TWO FACTORS*

By that definition, 1 is not prime, as it has only one factor.

But then, what is the smallest prime number? Prime numbers are also by definition always positive, so we need not worry about negative numbers. It’s tempting to then consider 3, but don’t overlook 2.

Even though 2 is even, it has exactly two factors, namely 1 and 2, and it is therefore prime. It is also the only even prime number. Take a moment to think critically about why that is before reading the next paragraph…

Any other even number must have more than two factors, because apart from 1 and the number itself, 2 must also be a factor. For example, the number 4 will have 1 and 4 as factors, of course, but it will also have 2, since it is even. No even number besides 2, therefore, will have exactly two factors.

Another way to read this, then, is that every prime number other than 2 is odd.

You can see already how prime numbers feed into other number properties so readily, and we’ll talk much more about that going forward. But another question people often ask is about memorization: do I have to memorize a certain number of prime values?

It’s good to know up to a certain value. but unnecessary to go beyond that into conspicuously larger numbers, because the GMAT as a test is less interested in your ability to memorize large and weird primes and more interested in your reasoning skills and your ability to draw conclusions about novel problems on the fly. If you know the following, you should be set (with some optional values thrown in at the end):

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, (41, 43)

Thankfully, you’ll notice the list is actually pretty manageable.

(And an interesting note that many people forget that 27 is actually not prime. But don’t beat yourself up if this happens to you: Terence Tao, one of the world’s leading mathematicians and an expert on prime numbers, actually slipped briefly on national television once and said 27 was prime before catching himself. And he’s one of the best in the world. So even the best of the best make these mistakes.)

Now, here’s an Official Guide problem that takes the basics of Prime Numbers and forces you to do a little reasoning. As usual, give it shot before reading the explanation:

The product of all the prime numbers less than 20 is closest to which of the following powers of 10?

A) 10⁹
B) 10⁸
C) 10⁷
D) 10⁶
E) 10⁵


For this one, you have a little hint going in, as we’ve provided you with the necessary list of primes you’ll use to find the product.

And the language given (“closest to”) is a huge hint that you can estimate:

2*3*5*7*11*13*17*19 ~= ??

Since powers of 10 are involved, let’s try to group the numbers to get 10s as much as possible. The following is just one of many ways you could do this, but the universal easiest place to start is the 2 and the 5, so let’s multiply those. We’ll mark numbers we’ve accounted for in red:

(2*5)*3*7*11*13*17*19 ~= ??

10*3*7*11*13*17*19 ~= ??

Next, we can look at the 19 and label it as roughly 20, or 2*10:

10*3*7*11*13*17*19 ~= ??

10*3*7*11*13*17*20 ~= ??

10*3*7*11*13*17*2*10 ~= ??

We could also take the 11 and estimate it as another 10:

10*3*7*11*13*17*2*10 ~= ??

10*3*7*10*13*17*2*10 ~= ??

At this point, we should be able to eyeball this. Remember, it’s estimation. We may not know 17*3 and 13*7 offhand. But we know that they’re both around or less than 100 or 10². And a look at the answer choices lets us know that each answer is a factor of 10 apart, so the range is huge. (In other words, estimation error is not likely to play a factor.)

So it’s not unreasonable in the context of this problem to label those remaining products as two values of 10²:

10*3*7*10*13*17*2*10 ~= ??

10*(102)*10*(102)*2*10 ~= ??

And at this point, the 2 is negligible, since that won’t be enough to raise the entire number to a higher power of 10. What do we have left?

101*(102)*101*(102)*101 ~= 10

The correct answer is C.

Next time, we’ll get into Prime Factorizations, which you can do with any positive integer.

If you are looking for private one-on-one GMAT tutoring with a 770+ scoring tutor, Apex is here to help you. We are able to accommodate you both in-person and online, based on your needs and preferences. If you want to talk to an Apex GMAT instructor about your GMAT prep, schedule a complimentary call here.




Apex GMAT is a GMAT prep company. We specialize in providing a personalized tutoring experience both in person and online. Visit our website @ www.apexgmat.com

Love podcasts or audiobooks? Learn on the go with our new app.

Recommended from Medium

Did I just find proof for a mathematics that analyzes SA Circles — dots, rather than lines?

Introduction to Numerical Analysis | The Intermediate Value Theorem in Python

zk-SNARK in a nutshell(1)

What is ‘e’ and why does anyone care?

Decision Trees — The Maths, The Theory, The Benefits

How zero was created and Why you cannot divide by zero?

What’s Really Important to be Successful in Mathematics

Degrees of freedom

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store


Apex GMAT is a GMAT prep company. We specialize in providing a personalized tutoring experience both in person and online. Visit our website @ www.apexgmat.com

More from Medium

How Robotics Process Automation is transforming work patterns and processes

Construction of Universal Turing Machine

Leaders Measure the Right Things

The Pink Stapler Test

Bias towards a certain norm in deep learning models